品牌 | 其他品牌 | 应用领域 | 能源,电子/电池,钢铁/金属,汽车及零部件 |
---|
QFLS准费米能级分裂测试仪
(Quasi-Fermi Level Splitting Tester)
QFLS准费米能级分裂测试仪由德国柏林亥姆霍兹中心(HZB) spin-off出来的QYB Quantum Yield Berlin GmbH公司的科学家们研发。该团队于2020年创造了钙钛矿/硅叠层太阳能电池效率的世纪记录29.15%,相应文章发表在Science上(DOI: 10.1126/science.abd4016)。
QFLS准费米能级分裂测试仪用于测试太阳能电池、LEDs等光电器件的绝对电致发光光谱和光致发光光谱,并计算iVoc 暗指开路电压、EL/PLQY量子产率,QFLS准费米能级分裂等。该设备设计紧凑,操作便捷,可放置手套箱内。
l
技术特点:
ELQY/PLQY灵敏度≥1E-6
*ELQY电致发光量子产率,
*PLQY光致发光量子产率
绝对光通量测量
绝对EL/PL谱检测
直接EL/PLQY量子产率计算
直接QFLS准费米能级分裂计算
理想因子计算
Pseudo-JV构建
激光光强扫描测量
电学偏压扫描测量
自动连续激光光强可调0.001~10“suns"
偏执电流/电压功能
整合了SMU
l 软件操作界面:
软件显示在各种变化激发条件下,测量样品发光光谱.
*上部分窗口:显示发射光谱,相机视野,计算LuQY(ELQY/PLQY)和 QFLS的值。
*下部分窗口:样品信息(“1" -增加QFLS计算可信度) 和调节激发及测试设定 (“2" – “4").
软件采用了两种QFLS准费米能级分裂计算方法,并会自动选择为各自测量选择*高可信度的方法。这可以取决于发射类型(例如,宽子带隙发射)以及用户是否提供光吸收数据。
l 直接QFLS准费米能级分裂预测:
-不要求样品的指定数据,可信度低
-可靠QFLS准费米能级分裂预测针对低子带隙发射和低斯托克斯位移发射
l 精细QFLS准费米能级分裂预测:
-提供样品指定吸收数据,增加QFLS准费米能级分裂可信度
-光学带隙,短路电流密度Jsc@STC和EQE外量子效率@532nm能手动输入或者从EQE/吸收光谱提取
-提供样品数据可以更加**的实现设定点激发设置(例如:1sun等效激光激发)和提高QFLS准费米能级分裂预测精度。
l 系统分辨能力
a)极限激光强度分别光斑尺寸0.1和1cm2下,样品的光学带隙(假定:样品理想吸收,光子能量以下为0,光学带隙能量以上为1)
b) LuQY(EL/PLQY)光学带隙能量*小可分辨(假定:a)中样品理想吸收,发射斯托克斯位移为0,虚线为LuQY*小分辨率@不同激发强度,光斑尺寸0.1和1cm2。
l 技术规格
光子激发波长:532 nm
极限激光功率:140 mW
可调光子激发强度(等效电流):4 μA - 40 mA
光子激发光斑(可选):0.1 cm² / 1 cm²
光谱测量范围:550 - 1050 nm
下限可分辨发光量子产率:1E-6
积分时间:1 ms – 35 min
光谱取样间隔:1 nm
信噪比:600:1
电流电压源和测量单元:±10 V, ±150 mA
电压源精度:10 mV
电压感应精度:50 μV
电流感应精度:100 nA, 1 μA, 10 μA
样品夹具:可定制(极限样品尺寸30mmX30mmX10mm)
极限测试子样品数量:6 subcells
设备尺寸:220 mm x 390 mm x 120 mm
重量:6.1 kg
注:LuQY Pro激光器强度校准为绝对光子数依据certified reference solar cells from Fraunhofer ISE CalLab PV Cells。LuQY Pro光谱灵敏度校准为绝对光子数依据可追溯NIST已知光通量的灯。
参考文献:
Publications Using LuQY Pro/LuQY Measurement System
[]
L. Jia et. al., „Efficient perovskite/silicon tandem with asymmetric self-assembly molecule“, Nature, July 2025, doi: 10.1038/s41586-025-09333-z.
[]
Z. Jia et al., “Efficient near-infrared harvesting in perovskite–organic tandem solar cells," Nature, vol. 643, no. 8070, pp. 104–110, Jul. 2025, doi: 10.1038/s41586-025-09181-x.
[]
H. Chen et al., “Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands," Science, vol. 384, no. 6692, pp. 189–193, Apr. 2024, doi: 10.1126/science.adm9474.
[]
J. Li et al., “Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides," Nature Energy, vol. 9, no. 3, pp. 308–315, Mar. 2024, doi: 10.1038/s41560-023-01442-1.
[]
Z. Wei et al., “Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers," Energy Environ. Sci., vol. 18, no. 4, pp. 1847–1855, 2025, doi: 10.1039/d4ee04029e.
[]
X. Tang et al., „Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge“, Nat. Photon., June 2025, doi: 10.1038/s41566-025-01676-3.
[]
Y. Yuan, G. Yan, S. Akel, U. Rau, and T. Kirchartz, “Deriving mobility-lifetime products in halide perovskite films from spectrally- and time-resolved photoluminescence," Apr. 16, 2025, Science Advances. doi: 10.1126/sciadv.adt1171.
[]
E. Alvianto et al., „Industry‐Compatible Fully Laminated Perovskite‐CIGS Tandem Solar Cells with Co‐Evaporated Perovskite“, Advanced Materials, July 2025, doi: 10.1002/adma.202505571.
[]
O. Er-raji et al., “Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells," Joule, vol. 0, no. 0, Jul. 2024, doi: 10.1016/j.joule.2024.06.018.
[]
H. Liang et al., “29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells," Joule, vol. 7, no. 12, pp. 2859–2872, Dec. 2023, doi: 10.1016/j.joule.2023.10.007.